Biobehavioral Health Building

University Park, PA
Tech 3 Report: Lateral System Analysis and Confirmation Design

2012-2013 AE Senior Thesis

Daniel Bodde

Structural Option
Advisor: Heather Sustersic

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

Table of Contents

Executive Summary 3
Building Introduction 4
Structural Overview 5
Foundation 5
Floor/Framing System 6
Lateral System 8
Design Codes 10
Material Properties 10
Design Loads 11
Dead 11
Live 12
Snow 12
Wind 12
Seismic 16
Analysis 17
ETABS Model 17
Relative Stiffness. 19
Center of Rigidity and Mass 20
Wind Load Cases 21
Story Drift 24
Overturning Moment 24
Spot Checks 25
Conclusion 26
Appendix A: Wind Load Calculations 27
Appendix B: Wind Load Cases Excel Calculations 33
Appendix C: Seismic Load Calculations 38
Appendix D: Center of Rigidity and Center of Mass Spot Checks 42
Appendix E: Member Strength Spot Checks 44

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

Executive Summary

The purpose of Technical Report 3 is to do a thorough analysis of the BBH Building's lateral system to confirm that the design is suitable. With the assistance of the structural modeling program ETABS this purpose was achieved. ETABS was used to determine critical values such as deflections, story shears, story drifts, internal member forces, and support reactions based on lateral loads determined from ASCE7-05. Though not shown in this report, the ETABS model was able to show the movement of the building from the applied loads through animations.

Values such as the deflections were used to calculate the relative stiffness's of each frame. This aided in the understanding of how the lateral loads will be distributed when acting on the BBH Building. Because the BBH Building is fairly regular in its layout on each level, similar action will be observed on every level. Understanding this results in the luxury of only having to analyze one level to get a sense of how the whole lateral system will act in its entirety. . As expected the eccentric braced frame, which produced the larges stiffness, took most of the direct shear from the lateral loads applied in the Y direction.

Spot checks were done on members at the base of the braced frame to verify if they could resist the loads applied to that frame. That specific frame was chosen for spot checks because it was determined to be the more critical component of the lateral system for the BBH Building due to its significant influence on the position of the center of rigidity.

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

Building Introduction

Located on the campus of the Pennsylvania State University in University Park, Pennsylvania is the Biobehavior Health Building (Figure 1). It is currently under construction and is scheduled to be finish in November 2012. When completed, it will house faculty and graduate students from the College of Health and Human Development. The overall project cost is approximately $\$ 40,000,000$ and is being funded by the Pennsylvania Department of General Services. The BBH Building is comprised of 5 stories above grade (including a penthouse) and has a full basement 100\% below grade.

The BBH Building was designed to blend with that existing architecture that surrounds it. The majority of the façade was designed to mimic Henderson North's Georgian style architecture with its large amount of hand placed brick and limestone. On the northeast portion of the building the design is more modern to replicate HUB, which is a popular student hang out. Since a portion of the BBH building protruded into the HUB Lawn, which is a popular student

Figure 1: PSU Campus Map hangout, a terrace has been provided (Figure 2). Not only does this offer a relaxing place for students to lounge but it will also be used as a stage for future concerts. A majority of the interior space is made up of offices and conference rooms that will house faculty and graduate students from the College of Health and Human Development. One of the key interior spaces is the lecture hall, which is located on the ground floor directly below the HUB lawn terrace. It is able to seat up to 200 people and has a ceiling designed to absorb any sounds or vibrations

Figure 2: Rendered View from HUB Lawn coming from the terrace above.

Tech 3 Report

Daniel Bodde

Structural Overview

Foundation

CMT Laboratories, Inc. were the geotechnical engineers hired to investigate the soil conditions on which the BBH building was to be placed. In order to better understand the soil located on the site, CMT Laboratories took six test boring samples. With the information gathered from the test borings they were able develop recommendations for the structure below grade.

It was recommended that the foundations bear on sound dolomite bedrock. Accordiong the the geotechnical engineer, "the bedrock must be free of clay seams or voids near the surface to provide a stable surface to place the foundations." If bedrock is encountered before the required bearing elevations are met then over excavation is required and needed to be back filled with lean concrete. The bearing material must have a bearing capacity of 15 psf minimum.

The BBH Building uses a shallow strip and spread footing foundation system. The strip footings are placed under the foundation walls around the perimeter of the building. These footings are at an elevation of -15^{\prime} and step down to -21^{\prime} around the lecture hall. A typical strip footing is $30^{\prime \prime}$ and $18^{\prime \prime}$ deep as shown in Figure 3. Normal weight concrete is used for all footings and must have minimum compressive 28 day strength of 4 ksi .

Figure 3: Typical Strip Footing

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

Floor/Framing System

The BBH Building floors are concrete slab on metal deck. The typical slab on deck consists of $31 / 4 \prime$ light weight concrete on $3^{\prime \prime} 18$ gage galvanized composite steel deck that is reinforced with 6 " $\times 6$ " $\mathrm{W} 2.0 \times \mathrm{W} 2.0$ welded wire fabric. Any deck opening that cuts through more than two deck webs needed to be reinforced. This was typically done with 4' long \#4 rebar place at each corner as shown in Figure 4. This is typically done to keep the integrity of the slab and also prevents unwanted cracking in the concrete.

Figure 4: Openings in Slab on Steel Deck building was designed as a composite steel system. Figure 5 shows a typical section through this composite system. $3 / 4$ " diameter shear studs are welded to the top flange of the beam/girder. The number of shear studs varies per beam/girder. The typical floor plan has beams spanning N-S and girder spanning E-W. See Figure 6 for a typical floor plan.

Figure 5: Typical Section Through Composite System

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

The composite slab supports gravity loads and transfers that load to the beams. The beams then transfer the load to the girders, which transfer the load to the columns. Finally the load is terminated at the foundations.

Figure 6: Typical Floor Framing Plan

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

Lateral System

The BBH Building uses two types of lateral force resisting systems, moment frames and an eccentric braced frame. These systems are used to resist lateral forces placed on the structure due to wind and seismic loads.

The moment frames are in both the N-S and E-W direction. Frames resisting N-S loads go from column line 2 to column line 6. Frames resisting E-W loads are only located along column lines B and D. This type of system is use on every level above grade. These moment frames are accomplished by designing a rigid connection between the beams and columns. A rigid connection is created by welding the top and bottom flange of the beam to the column as shown in Figure 7. Location of the moment connections are shown below in Figure 8. Because the east wing of the BBH Building is exposed to the HUB lawn, it will experience higher wind loads. This could be the reason for using a duel lateral system consisting of both moment frames and eccentric braced frames (Figure 8).

Figure 7: Typical Beam to Column Moment Connection

Figure 8: Location of Moment Connections (Red) and Braced Frame (Orange)

There is only a single eccentric braced frame in the BBH Building. It is located on the east side of the building along column line 10 (See Figure 8 above). Figure 9 shows the chevron bracing system used. Lateral movement in the frame is resisted through tension and compression in the HSS braces.

Figure 9: Eccentric Braced Frame

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

Design Codes

The BBH Building was designed using the following codes:

- IBC 2006 (as amended by Pennsylvania UCC administration)
- ASCE 7-05
- ACI 318-05
- ACI530/ASCE 5
- AISC, $13^{\text {th }}$ Edition

For this thesis the following codes were used in the analysis for the BBH Building:

- AISC, $14^{\text {th }}$ Edition
- ASCE 7-05

Material Properties

Steel	
Wide flange shapes	A992 or A572, fy=50ksi
Square and round steel tubing	ASTM A500, Grade B
Miscellaneous shapes, channels and angles	A36, or A572, fy=50ksi
Round pipes	A53, Grade B, fy=35ksi
Plates	A36, fy=36ksi
Anchor Rods	ASTM F1554, Grade 55
Bolted connections for beams and girders	A325 or F1852, 3/4" diameter
Welded headed shear studs	A108 3/4" diameter
Stainless steel hanger rods	ASTM A564 Type 17-PH fy=50ksi

Concrete	
Type	28 day compressive strength
Foundations	4000 psi
Slabs and beams	4000 psi

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

Reinforcement	
Deformed Bars	ASTM A615, Grade 60
Welded Reinforcing Steel	ASTMA706 Grade 60
Welded Wire Fabric	ASTM A185

Design Loads

The following design loads given by the designer.
Dead

Dead Loads * (psf) Slate roof assembly $\quad 32$	
Green roof assembly	60
Floor, typical	60
Floor, stone tile	85
Plaza (above auditorium)	212
* self-weight of steel framing members not included	

Tech 3 Report

Daniel Bodde

Live

Live Load	Uniform (psf)	Concentrated (lbs)
Offices/Classrooms	$80(1)$	-
Lobbies/Assembly	100	$2000(5)$
Corridors, Stair	100	$2000(5)$
Mechanical Rooms	$150(3)$	-
Roof	$30(2)$	-
Plaza	$125(4)$	-
Assembly (fixed seats)	60	-
Heavy storage	250	$2000(5)$
1. Includes 20 psf partition load		
2. Or Snow Load whichever is greater		
3. Used in absence of actual weight of mechanical equipment		
4. Used for roof over lecture Hall		
5. Concentrated load shall be uniformly distributed over a		
2.5 sq ft area and shall be located so as to produce maximum		
load effects in the structural members		

Snow

The drift load was calculated for the penthouse green roof as that is where the most drift would accumulate.

Snow Load Type	Uniform (psf)
Flat Roof Load	21
Sloped Roof Load	24
Drift Load	89.5

Wind

The wind design loads were found using the MWFRS Analytical Procedure found in ASCE 7-05. In order to do the analysis the building shaped was simplified to a rectangle (see Appendix A). The gabled roof was neglected when calculating the wind load in the E-W direction due to the slenderness of it in that direction.

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

In summary, the base shear due to wind in the N-S direction (315 kips) controlled over the base shear in the E-W direction (91 kips). This outcome was expected due to the large surface area the wind encounters in the N-S direction as opposed to the E-W direction. Below are tables and diagrams summarizing the distribution of wind pressures and forces. Hand calculations done for this procedure can be found in Appendix A.

MWFRS Pressures (N-S)			
ht	qz (psf)	Windward Pressure (psf)	Leeward Pressure (psf)
$0-15$	10.04	9.62	-9.23
20	10.93	10.22	-9.23
25	11.63	10.7	-9.23
30	12.34	11.18	-9.23
40	13.4	11.9	-9.23
50	14.28	12.5	-9.23
60	14.98	12.98	-9.23
63	15.16	13.1	-9.23
67	15.51	6.75	-10.7

Forces on Building (N-S)	
floor	Force (k)
2	61.48
3	67.12
4	74.23
PH	55.79
Bottom of roof	15.68
gabled roof	40.83
Base Shear	315.13

Tech 3 Report

Daniel Bodde
Advisor: Heather Sustersic

Figure 10: N-S Wind Pressure Diagram

Base Shear $=315.13 \mathrm{k}$

Figure 11: N-S Wind Story Force Diagram

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

MWFRS Pressures (E-W)			
ht	qz (psf)	Windward Pressure (psf)	Leeward Pressure (psf)
$0-15$	10.04	9.56	-6.21
20	10.93	10.16	-6.21
25	11.63	10.63	-6.21
30	12.34	11.12	-6.21
40	13.4	11.84	-6.21
50	14.28	12.44	-6.21
60	14.98	12.92	-6.21
63	15.16	13.04	-6.21

Forces on Building (E-W)	
floor	Force (k)
2	19.6
3	21.69
4	24.19
PH	20.48
Bottom of roof	5.14
Base Shear	91.1

Figure 12: E-W Wind Pressure Diagram

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

Base Shear $=91.1 \mathrm{k}$
Figure 13: E-W Wind Story Force Diagram

Seismic

Chapters 11, 12, and 22 of ASCE 7-05 were used to find the seismic design load for the BBH Building. More specifically section 12.8 was used to calculate the base shear. In order to calculate the base shear the total building weight needed to be estimated. This was done using estimated square footages and the dead loads (Appendix C). Using the geotechnical testing reports it was determine by the geotechnical engineer that the soil would be classified as site class C - very dense soil and soft rock. According to the IBC a Cs value of .01 is allowed for buildings with a seismic design category A. See Appendix C for hand calculations. Vertical distribution of the seismic forces is shown below in Figure 14

Base Shear $=84 \mathrm{k}$
Figure 14: Vertical Distribution of seismic forces

Tech 3 Report
Daniel Bodde
Advisor: Heather Sustersic

Analysis

ETABS Model

The lateral system for the BBH Building was modeled using ETABS. The model was created to aid in the analysis of the lateral system. Since the lateral system for the BBH building is composed of steel moment and braced frames it was fairly simple to model. All of the frame members, such as columns, beams, and braces, were modeled using line elements. These line elements were each defined with the correct frame sections and material properties as specified in the drawings. It was assumed that all base connections would be fixed. When drawing in the moment frames, ETABS automatically assumes moment connections between members. Therefore no further steps needed to be taken in modeling the connections between the beams and columns in the moment frames. In order properly model the eccentric braced frame, located on the east side of the building, all the connections between the beams, columns, and braces needed to have their moments to be released. This would insure that only axial forces would act in the braces. Finally, rigid diaphragms were inserted at each floor and were given their respective weights. These diaphragms act as the concrete slab and provide a "link" between all the moment and braced frames at each level so they all deflect the same distance. It is important note that the penthouse walls and roof were not modeled because they were not part of the BBH's lateral system. Snap shots of the lateral system modeled in ETABS can be seen below.(Figures 15 \& 16)

Figure 15: ETABS Model (view from east)

Tech 3 Report

Daniel Bodde
Advisor: Heather Sustersic

Figure 16: ETABS Model (view from west)

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

Relative Stiffness

In order to better understand how the lateral system of the BBH Building works, the relative stiffness of each frame needs to be determined. Stiffness is equal to a force (P) divided by the deflection (δ) caused by that force $(K=P / \delta)$. Using ETABS, a unit load of 1 kip was applied to the $5^{\text {th }}$ story of the BBH Building. After running the analysis in ETABS, deflection measurements were taken at the $5^{\text {th }}$ story of each frame. With the stiffness's calculated it was observed that the eccentric braced frame was the stiffest, which is to be expected. To find the relative stiffness's, each frames calculated stiffness was divided by the largest stiffness value, which in this case was the value calculated for the eccentric braced frame. These values give us a better sense of how the lateral forces get distributed to the frames at each level. See Figure 17 for the lateral frame layout and notation.

Figure 17: Lateral Frame Layout \& Notation

Story 5						
Direction	Frame		P	Defl. ($\mathbf{\delta}^{\text {) }}$	Frame Stiffness, K	Frame Relative Stiffness, $\mathrm{K}_{\text {rel }}$
	\#	Type	(kip)	(in)	(k/in)	(k/in)
X	1	Moment Frame	1	0.019464	51.38	0.1498
	2	Moment Frame	1	0.019523	51.22	0.1494
Y	3	Moment Frame	1	0.007022	142.41	0.4153
	4	Moment Frame	1	0.006570	152.21	0.4438
	5	Moment Frame	1	0.005981	167.20	0.4875
	6	Moment Frame	1	0.005383	185.77	0.5417
	7	Moment Frame	1	0.004786	208.94	0.6093
	8	Braced Frame	1	0.002916	342.94	1.0000

With each story of the BBH Building being fairly similar it is safe to assume that the behavior at the lower levels is consistent with the $5^{\text {th }}$ story. This assumption was quickly checked and verified with the use of ETABS. Because the BBH exudes this behavior, technical report 3 will only analyze and study the forces at the $5^{\text {th }}$ story.

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

Center of Rigidity and Mass

Using ETABS, the center of rigidity and center of mass were calculated in the model when the analysis was run. These values were then verified by hand using the relative stiffness and building weight(See appendix D). Below is an AutoCAD sketch showing the locations of the CR and CM for the $5^{\text {th }}$ story (Figure 18).

Figure 18: 5th Story CM \& CR
As you can see the CM and CR have an eccentricity in both the X and Y direction. Since forces act at the center of mass and rotation occurs about the center of rigidity, a torsional moment is now created from these eccentricities. These torsional moments will be calculated later in the report. See the table below for CM and CR values at each floor calculated by ETABS. (Note: Dimensions are in feet and are taken about the origin)

Story	XCM	YCM	XCR	YCR
STORY 5	121.866	40.774	152.043	42.892
STORY 4	118.548	40.857	149.644	43.078
STORY 3	118.52	40.855	147.683	42.47
STORY 2	122.692	40.986	136.431	41.499
STORY 1	113.61	43.118		

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

Wind Load Cases

Earlier in the report it was determined that wind forces would be the dominating force in both directions over the seismic forces. For this reason tech 3 will focus on wind forces only. In ASCE7-05 there are four wind load cases that need to be applied to the building in order to determine a worst case scenario for the design of the lateral system. Below are the four ASCE7-05 wind load cases.

CASE 2
CASE 4
Case 1. Full design wind pressure acting on the projected area perpendicular to each principal axis of the structure, considered separately along each principal axis.
Case 2. Three quarters of the design wind pressure acting on the projected area perpendicular to each principal axis of the structure in conjunction with a torsional moment as shown, considered separately for each principal axis.
Case 3. Wind loading as defined in Case 1, but considered to act simultaneously at 75% of the specified value.

Case 4. Wind loading as defined in Case 2, but considered to act simultancously at 75% of the specified value.

Notes:

1. Design wind pressures for windward and leeward faces shall be determined in accordance with the provisions of $6.5 \cdot 12.2 .1$ and $6.5 \cdot 12.2 .3$ as applicable for building of all heights.
2. Diagrams show plan views of building.
3. Notation:
$P_{W X}, P_{W Y}$: Windward face design pressure acting in the x, y principal axis, respectively.
$P_{L X} P_{L Y}$: Leeward face design pressure acting in the x , y principal axis, respectively. $e\left(e_{X}, e_{y}\right)$: Eccentricity for the x, y principal axis of the structure, respectively.
M_{r} : Torsional moment per unit height acting about a vertical axis of the building.

These load cases were applied to the $5^{\text {th }}$ story of the lateral system of the BBH Building. Again, because every story is similar we can assume that the lower stories will behave in a similar fashion when their respective story load is applied to it. After completion of the calculations it was determined that Case 1 on average controls both in the N-S and E-W direction. Below are the results of each load case. These results show the distribution of the lateral load to each frame due to the direct shear and torsional shear. See appendix B for spreadsheet calculations performed to obtain these values. Be sure to notice that frame 8 takes the most direct shear force in every case. This confirms our observation that the eccentric braced frame (frame 8) is the stiffest component of the lateral system. It is only because of the torsional shear, in some cases, acting in the opposite direction that frame 8 does not always control when direct and torsional shear are summed together.

Case 1			
N-S Direction		E-W Direction	
Frame	Force (kips)	Frame	Force (kips)
1	0.52	1	12.81
2	-0.43	2	12.79
3	21.22	3	-0.12
4	21.13	4	-0.10
5	21.09	5	-0.08
6	21.00	6	-0.05
7	20.89	7	-0.02
8	20.23	8	0.18

Case 2 +e				Case 2-e			
N-S Direction		E-W Direction		N-S Direction		E-W Direction	
Frame	Force (kips)						
1	-0.08	1	9.65	1	0.86	1	9.55
2	0.06	2	9.56	2	-0.71	2	9.58
3	8.82	3	0.49	3	23.01	3	-0.67
4	9.66	4	0.43	4	22.04	4	-0.59
5	10.92	5	0.34	5	20.72	5	-0.46
6	12.50	6	0.23	6	19.00	6	-0.31
7	14.47	7	0.08	7	16.86	7	-0.11
8	25.86	8	-0.74	8	4.48	8	1.01

Tech 3 Report

Daniel Bodde

Case 3	
Frame	Force (kips)
1	10.01
2	9.27
3	15.82
4	15.77
5	15.76
6	15.71
7	15.65
8	15.31

Case 4							
NS +e \& EW +e		NS +e \& EW -e		NS -e \& EW -e		NS -e \& EW +e	
Frame	Force (kips)						
1	7.19	1	7.13	1	7.83	1	7.89
2	7.23	2	7.28	2	6.69	2	6.64
3	6.99	3	6.11	3	16.76	3	17.64
4	7.57	4	6.81	4	16.10	4	16.87
5	8.46	5	7.85	5	15.20	5	15.81
6	9.56	6	9.15	6	14.03	6	14.43
7	10.93	7	10.78	7	12.57	7	12.72
8	18.85	8	20.18	8	4.12	8	2.80

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

Story Drift

In ASCE 7-05 the story drift limit was found to be H/400 where H is the story height. This was found in Chapter C, Appendix C. Keeping the story drift below H/400 is more for serviceability and will reduce any damage to the façade or nonstructural components. Unfactored loads were used in the analysis of the story drifts. The tables below show that each story has a story drift below the limit of $H / 400$ in both the X and Y directions.

Story Drift - Y Direction					
Story	Story Height	Displacement	H/400	Story Drift	Pass?
	(ft)	(in)	(in)	(in)	Yes
PH	15	1.04	0.45	0.21	Yes
4	14	0.83	0.42	0.25	Yes
3	14	0.58	0.42	0.32	Yes
2	14	0.26	0.42	0.26	Yes

Story Drift - X Direction					
Story	Story Height	Displacement	H/400	Story Drift	Pass?
	(ft)	(in)	(in)	(in)	Yes
PH	15	1.07	0.45	0.18	Yes
4	14	0.89	0.42	0.26	Yes
3	14	0.63	0.42	0.35	Yes
2	14	0.28	0.42	0.28	Yes

Overturning Moment

The wind forces being applied to the BBH Building create a moment at the base of the structure making the building want to overturn hence the term "overturning moment." The controlling overturning moment in the BBH Building occurs about the plan East-West axis. This moment is calculated summing the product of the story shears with their corresponding moment arm. See the table below.

Overturning Moment					
Level	ht (ft)	Wind Force (K)	Moment (k-ft)		
Roof	67	40.83	2736		
Parapet	63	15.68	988		
PH	57	55.79	3180		
4	41.5	74.23	3081		
3	27.5	67.12	1846		
2	13.5	61.48	830		
	Overturning Moment $=$				$12,660 \mathrm{k}-\mathrm{ft}$

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

This overturning moment is resisted by the buildings weight creating a moment in the opposite direction. This resisting moment can be estimated by taking $2 / 3$ of the building weight times half of the buildings depth (dimension the moment is acting about). See the table below for resisting moment calculation. Fortunately in this case the resisting moment is enough to keep the building from overturning. If this were not the case then special consideration would need to be taken in the design of the foundation system (ex: increased reinforcement, wider spread footing base, increased anchor bolt strength, etc.).

Resisting Moment

$\mathrm{M}_{\text {resist }}=8,352 \mathrm{k} \times 89$ ' $2 \mathrm{x} .67=249,015 \mathrm{k}-\mathrm{ft}$

Spot Checks

Spot checks were done on the column and brace at the base of the eccentric braced frame. This frame is the more critical frame in the lateral system of the BBH Building. Because it is the only frame on the east portion of the building, a failure in this frame would cause the center of rigidly to drastically shift to the west and would cause the building to experience an amplified torsional force, which would most likely cause the significant damage to the BBH Building. See Appendix E for spot check calculations.

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

Conclusion

The analysis done in this tech report has confirmed that the BBH's lateral system is adequate to resist the applied wind loads determined from ASCE7-05. Spot checks were done on members at the base of the braced frame to verify if they could resist the loads applied to that frame. That specific frame was chosen for spot checks because it was determined to be the more critical component of the lateral system of the BBH Building due to its significant influence on the position of the center of rigidity.

In this report the use of ETABS assisted in the determination of critical values used to calculate the relative stiffness of the individual lateral frames. Such values consisted of deflections, story shears, story drifts, internal member forces, and support reactions. Though not shown in this report, the ETABS model was able to show the movement of the building from the applied loads through animations.

The main objective of understanding the load distribution/path was achieved through this report. Through the use of the calculated relative stiffness's it became clear which frames were given the task of carrying the majority of the lateral load. As expected the eccentric braced frame, which produced the larges stiffness, took most of the direct shear from the lateral loads applied in the Y direction.

Appendix A: Wind Load Calculations
Daniel Bobble 1 Tech 1
Building: Biobehaviaral Health Building.
Location: University Park
6.5.4 Basic Wind Speed, V

For University Park $V=90 \mathrm{mph} \quad$ (ser f.ghe-1)
6.5.4.4 Wind Directionality Factor.Kd

$$
K d=0.85
$$

6.5.5 Importance Factor, I

Building <ategory - II $\quad \Rightarrow I=1.00 \quad$ (seetable6-1)
6.5.4 Exposure: B
6.5.7 Topographic Effects
$K_{z_{t}}=1.0 \quad$ for homogeneous topography
6.5.8.1 Gust Effect Factor - Rip Srosimes, G use $G=0.85$
6.10 Velocity Pressure, q_{z}

Tech 3 Report

Tech 3 Report
Daniel Mode
Advisor: Heather Sustersic

Daniel Badde \mid tech 1
Wind Forie at each story $(N-S)$

2nd

$$
\begin{aligned}
& {\left[\left[(9.122 \mathrm{ps5})\left(6.75^{\circ}\right)+(9.62 \mathrm{se})\left(1.5^{\circ}\right)+(10.24+0)\left(5^{\circ}\right)+(10.70)\right)\left(.5^{\circ}\right)\right]\left(234^{\prime}\right)} \\
& \left.\quad+(9.23 \mathrm{Pss}) /\left(13.25^{\prime}\right)\left(234^{\circ}\right)\right] / 1000=61.48 \mathrm{~K}
\end{aligned}
$$

3 3d

$$
\begin{aligned}
& {\left[(0.7)\left(4.5^{\circ}\right)+(11.18)\left(3^{\prime}\right)+(11.9)\left(4.5^{\circ}\right)+(9.25)\left(14^{\prime}\right)\right] \frac{234}{1000}=} \\
& =67.12 K
\end{aligned}
$$

4 th

$$
[(11.9)(5.5)+(12.5)(9.25)+(9.23)(14.75)] \frac{234}{000}=[74.23 \mathrm{~K}
$$

PH

$$
\left.\left[(12.5)\left(\cdot 70^{\circ}\right)+(12.98)\left(10^{\circ}\right)+(9.23)(0.75)\right] \frac{23}{1000}=55.79 \mathrm{~K}\right]
$$

Botton of

$$
\left[(13.1)(3)+(9.23(3)] \frac{234}{100}=3.68 \mathrm{~K}\right.
$$

Horiz Porce, On gablai roct

$$
\begin{aligned}
& H_{v}=105 \cos (50)=4954 \\
& H_{2}=146 \cos (50)=107 \times 19
\end{aligned}
$$

$$
(67.5+107) \frac{(234}{1000}=40.83 \mathrm{~K}
$$

Tech 3 Report

3 rd

$$
\begin{aligned}
& {[(16.43)(4.5)+(11.12)(5)+(11.84)(4.5)+(6.21)(14)] \frac{8^{0}}{1000}} \\
& =121.69 \mathrm{~K}
\end{aligned}
$$

$4+h$

$$
\begin{aligned}
& {[(11.54)(5.5)+(12.44)(9.25)+(6.21)(5+2)] \frac{8}{1000}} \\
& =24.19 \mathrm{~K} .
\end{aligned}
$$

PH

$$
\begin{aligned}
& {[(12.44)(.75)+(12.92)(6)+(4.21)(14.75)] \frac{8^{9}}{1000}} \\
& =120.48 x
\end{aligned}
$$

Bat

$$
\left.\left[\left(13.0^{4}\right)(3)+(6.2)\right)(3)\right] \cdot 8 \cdot 5.14 \mathrm{k}
$$

$\frac{\text { Base shear }}{\mathrm{N}-\mathrm{S}}$

$$
\begin{aligned}
V_{005} & =41.48+4.122+74.23+55 .-9+15.68+40.83 \\
& =315.13 K \text { Controls }
\end{aligned}
$$

E-W

$$
V_{E}=19.40+21.49+24.59+20.48+5.14=91.1 \mathrm{~K}
$$

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

Appendix B: Wind Load Cases Excel Calculations

Case 1 NS									
$\mathrm{F}_{\text {NS }}$ (kip)	112.3			$\mathrm{e}_{\text {NS }}(\mathrm{ft})$	-30				
F_{Ew} (kip)	0			$\mathrm{e}_{\mathrm{EW}}(\mathrm{ft})$	0				
$\mathrm{M}_{\text {NS }}(\mathrm{k}-\mathrm{ft})$	-3369								
$\mathrm{M}_{\mathrm{EW}}(\mathrm{k}-\mathrm{ft})$	0								
Frame	K (k/in)	$\begin{aligned} & \sum \mathrm{K}_{\mathrm{NS}} \\ & (\mathrm{k} / \mathrm{in}) \end{aligned}$	$\begin{gathered} \sum \mathrm{K}_{\mathrm{EW}} \\ (\mathrm{k} / \mathrm{in}) \end{gathered}$	Direct shear (kip)	d (ft)	Kd^2	$\Sigma K d^{\wedge} 2$	Torsional Moment Shear (kip)	Total shear (kip)
1	0.1498	0.00	0.30	0.00	-24.00	86.29	23251.88	0.52	0.52
2	0.1494	0.00	0.30	0.00	20.00	59.74	23251.88	-0.43	-0.43
3	0.4153	3.50	0.00	13.33	-131.00	7126.39	23251.88	7.88	21.22
4	0.4438	3.50	0.00	14.25	-107.00	5081.47	23251.88	6.88	21.13
5	0.4875	3.50	0.00	15.65	-77.00	2890.65	23251.88	5.44	21.09
6	0.5417	3.50	0.00	17.39	-46.00	1146.25	23251.88	3.61	21.00
7	0.6093	3.50	0.00	19.56	-15.00	137.09	23251.88	1.32	20.89
8	1.0000	3.50	0.00	32.11	82.00	6724.00	23251.88	-11.88	20.23

Case 1 EW									
$\mathrm{F}_{\text {NS }}$ (kip)	0			$\mathrm{e}_{\text {NS }}(\mathrm{ft})$	0				
F_{EW} (kip)	25.6			$\mathrm{e}_{\mathrm{EW}}(\mathrm{ft})$	2				
$\mathrm{M}_{\text {NS }}(\mathrm{k}-\mathrm{ft})$	0								
$\mathrm{M}_{\mathrm{EW}}(\mathrm{k}-\mathrm{ft})$	51.2								
Frame	K (k/in)	$\sum K_{\text {NS }}$ (k/in)	$\begin{aligned} & \sum K_{\mathrm{EW}} \\ & (\mathrm{k} / \mathrm{in}) \end{aligned}$	Direct shear (kip)	$\begin{gathered} \mathrm{d} \\ (\mathrm{ft}) \end{gathered}$	$K d^{\wedge} 2$	$\sum \mathrm{Kd}^{\wedge} 2$	Torsional Moment Shear (kip)	Total shear (kip)
1	0.1498	0.00	0.30	12.82	-24.00	86.29	23251.88	-0.01	12.81
2	0.1494	0.00	0.30	12.78	20.00	59.74	23251.88	0.01	12.79
3	0.4153	3.50	0.00	0.00	-131.00	7126.39	23251.88	-0.12	-0.12
4	0.4438	3.50	0.00	0.00	-107.00	5081.47	23251.88	-0.10	-0.10
5	0.4875	3.50	0.00	0.00	-77.00	2890.65	23251.88	-0.08	-0.08
6	0.5417	3.50	0.00	0.00	-46.00	1146.25	23251.88	-0.05	-0.05
7	0.6093	3.50	0.00	0.00	-15.00	137.09	23251.88	-0.02	-0.02
8	1.0000	3.50	0.00	0.00	82.00	6724.00	23251.88	0.18	0.18

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

Case 2 NS + .15By									
. $75 \mathrm{~F}_{\text {NS }}$ (kip)	84.225			$\mathrm{e}_{\text {NS }}(\mathrm{ft})$	6				
. $75 \mathrm{~F}_{\mathrm{EW}}$ (kip)	0			$\mathrm{e}_{\mathrm{EW}}(\mathrm{ft})$	0				
$\mathrm{M}_{\text {NS }}(\mathrm{k}-\mathrm{ft})$	505.35								
$M_{E W}(k-f t)$	0								
Frame	K (k/in)	$\begin{aligned} & \sum \mathrm{K}_{\mathrm{NS}} \\ & (\mathrm{k} / \mathrm{in}) \end{aligned}$	$\begin{aligned} & \sum K_{E W} \\ & (\mathrm{k} / \mathrm{in}) \end{aligned}$	Direct shear (kip)	d (ft)	Kd^2	$\Sigma K d^{\wedge} 2$	Torsional Moment Shear (kip)	Total shear (kip)
1	0.1498	0.00	0.30	0.00	-24.00	86.29	23251.88	-0.08	-0.08
2	0.1494	0.00	0.30	0.00	20.00	59.74	23251.88	0.06	0.06
3	0.4153	3.50	0.00	10.00	-131.00	7126.39	23251.88	-1.18	8.82
4	0.4438	3.50	0.00	10.69	-107.00	5081.47	23251.88	-1.03	9.66
5	0.4875	3.50	0.00	11.74	-77.00	2890.65	23251.88	-0.82	10.92
6	0.5417	3.50	0.00	13.04	-46.00	1146.25	23251.88	-0.54	12.50
7	0.6093	3.50	0.00	14.67	-15.00	137.09	23251.88	-0.20	14.47
8	1.0000	3.50	0.00	24.08	82.00	6724.00	23251.88	1.78	25.86

Case 2 NS - .15By									
. $75 \mathrm{~F}_{\text {NS }}$ (kip)	84.225			$\mathrm{e}_{\text {NS }}(\mathrm{ft})$	-66				
. $75 \mathrm{~F}_{\text {EW }}$ (kip)	0			$\mathrm{e}_{\mathrm{EW}}(\mathrm{ft})$	0				
$\mathrm{M}_{\text {NS }}(\mathrm{k}-\mathrm{ft})$	-5558.85								
$M_{E W}(k-f t)$	0								
Frame	K (k/in)	$\begin{aligned} & \sum \mathrm{K}_{\mathrm{NS}} \\ & (\mathrm{k} / \mathrm{in}) \end{aligned}$	$\begin{gathered} \sum \mathrm{K}_{\mathrm{EW}} \\ (\mathrm{~K} / \mathrm{in}) \end{gathered}$	Direct shear (kip)	d (ft)	Kd^2	$\Sigma K d^{\wedge} 2$	Torsional Moment Shear (kip)	Total shear (kip)
1	0.1498	0.00	0.30	0.00	-24.00	86.29	23251.88	0.86	0.86
2	0.1494	0.00	0.30	0.00	20.00	59.74	23251.88	-0.71	-0.71
3	0.4153	3.50	0.00	10.00	-131.00	7126.39	23251.88	13.01	23.01
4	0.4438	3.50	0.00	10.69	-107.00	5081.47	23251.88	11.35	22.04
5	0.4875	3.50	0.00	11.74	-77.00	2890.65	23251.88	8.97	20.72
6	0.5417	3.50	0.00	13.04	-46.00	1146.25	23251.88	5.96	19.00
7	0.6093	3.50	0.00	14.67	-15.00	137.09	23251.88	2.18	16.86
8	1.0000	3.50	0.00	24.08	82.00	6724.00	23251.88	-19.60	4.48

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

Case 2 EW -. 15 Bx									
. $75 \mathrm{~F}_{\text {NS }}$ (kip)	0			$\mathrm{e}_{\text {NS }}(\mathrm{ft})$	0				
. $75 \mathrm{~F}_{\mathrm{EW}}$ (kip)	19.2			$\mathrm{e}_{\mathrm{EW}}(\mathrm{ft})$	15				
$\mathrm{M}_{\text {NS }}(\mathrm{k}-\mathrm{ft})$	0								
$\mathrm{M}_{\mathrm{EW}}(\mathrm{k}-\mathrm{ft})$	288								
Frame	K (k/in)	$\begin{aligned} & \sum \mathrm{K}_{\mathrm{NS}} \\ & (\mathrm{k} / \mathrm{in}) \end{aligned}$	$\begin{gathered} \sum \mathrm{K}_{\mathrm{EW}} \\ (\mathrm{k} / \mathrm{in}) \end{gathered}$	Direct shear (kip)	d (ft)	$K d^{\wedge} 2$	$\Sigma K d^{\wedge} 2$	Torsional Moment Shear (kip)	Total shear (kip)
1	0.1498	0.00	0.30	9.61	-35.50	188.80	23299.17	-0.07	9.55
2	0.1494	0.00	0.30	9.59	-5.50	4.52	23299.17	-0.01	9.58
3	0.4153	3.50	0.00	0.00	-131.00	7126.39	23299.17	-0.67	-0.67
4	0.4438	3.50	0.00	0.00	-107.00	5081.47	23299.17	-0.59	-0.59
5	0.4875	3.50	0.00	0.00	-77.00	2890.65	23299.17	-0.46	-0.46
6	0.5417	3.50	0.00	0.00	-46.00	1146.25	23299.17	-0.31	-0.31
7	0.6093	3.50	0.00	0.00	-15.00	137.09	23299.17	-0.11	-0.11
8	1.0000	3.50	0.00	0.00	82.00	6724.00	23299.17	1.01	1.01

Case $2 \mathrm{EW}+.15 \mathrm{Bx}$				$\mathrm{e}_{\text {NS }}(\mathrm{ft})$	0				
. $75 \mathrm{~F}_{\text {NS }}$ (kip)	0								
. $75 \mathrm{~F}_{\mathrm{Ew}}$ (kip)	19.2			$\mathrm{e}_{\mathrm{EW}}(\mathrm{ft})$	-11				
$\mathrm{M}_{\text {NS }}(\mathrm{k}-\mathrm{ft})$	0								
$\mathrm{M}_{\mathrm{EW}}(\mathrm{k}-\mathrm{ft})$	-211.2								
Frame	K (k/in)	$\begin{aligned} & \sum \mathrm{K}_{\mathrm{NS}} \\ & (\mathrm{k} / \mathrm{in}) \end{aligned}$	$\begin{gathered} \sum \mathrm{K}_{\mathrm{EW}} \\ (\mathrm{k} / \mathrm{in}) \end{gathered}$	Direct shear (kip)	$\begin{gathered} d \\ (\mathrm{ft}) \end{gathered}$	$K d^{\wedge} 2$	$\Sigma K d^{\wedge} 2$	Torsional Moment Shear (kip)	Total shear (kip)
1	0.1498	0.00	0.30	9.61	-24.00	86.29	23251.88	0.03	9.65
2	0.1494	0.00	0.30	9.59	20.00	59.74	23251.88	-0.03	9.56
3	0.4153	3.50	0.00	0.00	-131.00	7126.39	23251.88	0.49	0.49
4	0.4438	3.50	0.00	0.00	-107.00	5081.47	23251.88	0.43	0.43
5	0.4875	3.50	0.00	0.00	-77.00	2890.65	23251.88	0.34	0.34
6	0.5417	3.50	0.00	0.00	-46.00	1146.25	23251.88	0.23	0.23
7	0.6093	3.50	0.00	0.00	-15.00	137.09	23251.88	0.08	0.08
8	1.0000	3.50	0.00	0.00	82.00	6724.00	23251.88	-0.74	-0.74

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

Case 3 NS \& EW									
. $75 \mathrm{~F}_{\text {NS }}$ (kip)	84.225			$\mathrm{e}_{\text {NS }}(\mathrm{ft})$	-30				
. $75 \mathrm{~F}_{\mathrm{EW}}$ (kip)	19.215			$\mathrm{e}_{\mathrm{Ew}}(\mathrm{ft})$	2				
$\mathrm{M}_{\text {NS }}(\mathrm{k}-\mathrm{ft})$	-2526.75								
$M_{E W}(k-f t)$	38.43								
Frame	K (k/in)	$\begin{gathered} \sum K_{\text {NS }} \\ (\mathrm{K} / \mathrm{in}) \end{gathered}$	$\begin{aligned} & \sum K_{E W} \\ & (\mathrm{k} / \mathrm{in}) \end{aligned}$	Direct shear (kip)	$\begin{gathered} \mathrm{d} \\ (\mathrm{ft}) \end{gathered}$	Kd^2	$\Sigma K d^{\wedge} 2$	Torsional Moment Shear (kip)	Total shear (kip)
1	0.1498	0.00	0.30	9.62	-24.00	86.29	23251.88	0.38	10.01
2	0.1494	0.00	0.30	9.59	20.00	59.74	23251.88	-0.32	9.27
3	0.4153	3.50	0.00	10.00	-131.00	7126.39	23251.88	5.82	15.82
4	0.4438	3.50	0.00	10.69	-107.00	5081.47	23251.88	5.08	15.77
5	0.4875	3.50	0.00	11.74	-77.00	2890.65	23251.88	4.02	15.76
6	0.5417	3.50	0.00	13.04	-46.00	1146.25	23251.88	2.67	15.71
7	0.6093	3.50	0.00	14.67	-15.00	137.09	23251.88	0.98	15.65
8	1.0000	3.50	0.00	24.08	82.00	6724.00	23251.88	-8.78	15.31

Case 4 NS+.15By \& EW+. 15									
. $563 \mathrm{~F}_{\text {NS }}$ (kip)	63.2249			$\mathrm{e}_{\mathrm{NS}}(\mathrm{ft})$	6				
. $563 \mathrm{~F}_{\mathrm{EW}}$ (kip)	14.42406			$\mathrm{e}_{\mathrm{Ew}}(\mathrm{ft})$	-11				
$\mathrm{M}_{\text {NS }}$ (k-ft)	379.3494								
$\mathrm{M}_{\mathrm{EW}}(\mathrm{k}-\mathrm{ft})$	-158.66466								
Frame	K (k/in)	$\begin{aligned} & \sum \mathrm{K}_{\mathrm{NS}} \\ & (\mathrm{k} / \mathrm{in}) \end{aligned}$	$\begin{gathered} \sum \mathrm{K}_{\mathrm{EW}} \\ (\mathrm{k} / \mathrm{in}) \end{gathered}$	Direct shear (kip)	$\begin{gathered} \mathrm{d} \\ (\mathrm{ft}) \end{gathered}$	$K d^{\wedge} 2$	$\Sigma K d^{\wedge} 2$	Torsional Moment Shear (kip)	Total shear (kip)
1	0.1498	0.00	0.30	7.22	-24.00	86.29	23251.88	-0.03	7.19
2	0.1494	0.00	0.30	7.20	20.00	59.74	23251.88	0.03	7.23
3	0.4153	3.50	0.00	7.51	-131.00	7126.39	23251.88	-0.52	6.99
4	0.4438	3.50	0.00	8.02	-107.00	5081.47	23251.88	-0.45	7.57
5	0.4875	3.50	0.00	8.81	-77.00	2890.65	23251.88	-0.36	8.46
6	0.5417	3.50	0.00	9.79	-46.00	1146.25	23251.88	-0.24	9.56
7	0.6093	3.50	0.00	11.01	-15.00	137.09	23251.88	-0.09	10.93
8	1.0000	3.50	0.00	18.08	82.00	6724.00	23251.88	0.78	18.85

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

Case 4 NS-.15By \& EW-.15E									
. $563 \mathrm{~F}_{\text {NS }}$ (kip)	63.2249			$\mathrm{e}_{\text {NS }}(\mathrm{ft})$	-66				
. $563 \mathrm{~F}_{\mathrm{EW}}(\mathrm{kip}$)	14.42406			$\mathrm{e}_{\text {EW }}(\mathrm{ft})$	15				
$\mathrm{M}_{\text {NS }}$ (k-ft)	-4172.8434								
$\mathrm{M}_{\mathrm{EW}}(\mathrm{k}-\mathrm{ft})$	216.3609								
Frame	K (k/in)	$\begin{aligned} & \sum K_{N S} \\ & (\mathrm{~K} / \mathrm{in}) \end{aligned}$	$\begin{aligned} & \sum K_{E W} \\ & (\mathrm{~K} / \mathrm{in}) \end{aligned}$	Direct shear (kip)	$\begin{gathered} \mathrm{d} \\ (\mathrm{ft}) \end{gathered}$	Kd^2	$\Sigma K d^{\wedge} 2$	Torsional Moment Shear (kip)	Total shear (kip)
1	0.1498	0.00	0.30	7.22	-24.00	86.29	23251.88	0.61	7.83
2	0.1494	0.00	0.30	7.20	20.00	59.74	23251.88	-0.51	6.69
3	0.4153	3.50	0.00	7.51	-131.00	7126.39	23251.88	9.26	16.76
4	0.4438	3.50	0.00	8.02	-107.00	5081.47	23251.88	8.08	16.10
5	0.4875	3.50	0.00	8.81	-77.00	2890.65	23251.88	6.39	15.20
6	0.5417	3.50	0.00	9.79	-46.00	1146.25	23251.88	4.24	14.03
7	0.6093	3.50	0.00	11.01	-15.00	137.09	23251.88	1.56	12.57
8	1.0000	3.50	0.00	18.08	82.00	6724.00	23251.88	-13.95	4.12

Case 4 NS+.15By \& EW-. 15 E									
. $563 \mathrm{~F}_{\text {NS }}$ (kip)	63.2249			$\mathrm{e}_{\text {NS }}(\mathrm{ft})$	6				
. $563 \mathrm{~F}_{\mathrm{EW}}$ (kip)	14.42406			$e_{\text {EW }}(\mathrm{ft})$	15				
$\mathrm{M}_{\text {NS }}(\mathrm{k}-\mathrm{ft})$	379.3494								
$M_{\text {EW }}(k-f t)$	216.3609								
Frame	$K \quad(k / i n)$	$\begin{aligned} & \sum K_{N S} \\ & (\mathrm{~K} / \mathrm{in}) \end{aligned}$	$\begin{aligned} & \sum K_{E W} \\ & (\mathrm{k} / \mathrm{in}) \end{aligned}$	Direct shear (kip)	$\begin{gathered} d \\ (\mathrm{ft}) \end{gathered}$	$K d^{\wedge} 2$	$\sum K d^{\wedge} 2$	Torsional Moment Shear (kip)	Total shear (kip)
1	0.1498	0.00	0.30	7.22	-24.00	86.29	23251.88	-0.09	7.13
2	0.1494	0.00	0.30	7.20	20.00	59.74	23251.88	0.08	7.28
3	0.4153	3.50	0.00	7.51	-131.00	7126.39	23251.88	-1.39	6.11
4	0.4438	3.50	0.00	8.02	-107.00	5081.47	23251.88	-1.22	6.81
5	0.4875	3.50	0.00	8.81	-77.00	2890.65	23251.88	-0.96	7.85
6	0.5417	3.50	0.00	9.79	-46.00	1146.25	23251.88	-0.64	9.15
7	0.6093	3.50	0.00	11.01	-15.00	137.09	23251.88	-0.23	10.78
8	1.0000	3.50	0.00	18.08	82.00	6724.00	23251.88	2.10	20.18

Case 4 NS-. 15 By \& EW+.15Bx									
. $563 \mathrm{~F}_{\text {NS }}$ (kip)	63.2249			$\mathrm{e}_{\text {NS }}(\mathrm{ft})$	-66				
. $563 \mathrm{~F}_{\mathrm{EW}}$ (kip)	14.42406			e_{EW} (ft)	-11				
$\mathrm{M}_{\text {NS }}$ (k-ft)	-4172.8434								
$\mathrm{M}_{\mathrm{EW}}(\mathrm{k}-\mathrm{ft})$	-158.66466								
Frame	$K \quad(k / i n)$	$\begin{aligned} & \sum K_{\text {NS }} \\ & (\mathrm{K} / \mathrm{in}) \end{aligned}$	$\begin{aligned} & \sum K_{E W} \\ & (\mathrm{k} / \mathrm{in}) \end{aligned}$	Direct shear (kip)	$\begin{gathered} \mathrm{d} \\ (\mathrm{ft}) \end{gathered}$	$K d^{\wedge} 2$	$\Sigma K d^{\wedge} 2$	Torsional Moment Shear (kip)	Total shear (kip)
1	0.1498	0.00	0.30	7.22	-24.00	86.29	23251.88	0.67	7.89
2	0.1494	0.00	0.30	7.20	20.00	59.74	23251.88	-0.56	6.64
3	0.4153	3.50	0.00	7.51	-131.00	7126.39	23251.88	10.13	17.64
4	0.4438	3.50	0.00	8.02	-107.00	5081.47	23251.88	8.85	16.87
5	0.4875	3.50	0.00	8.81	-77.00	2890.65	23251.88	6.99	15.81
6	0.5417	3.50	0.00	9.79	-46.00	1146.25	23251.88	4.64	14.43
7	0.6093	3.50	0.00	11.01	-15.00	137.09	23251.88	1.70	12.72
8	1.0000	3.50	0.00	18.08	82.00	6724.00	23251.88	-15.28	2.80

Tech 3 Report
Daniel Mode

Appendix C: Seismic Load Calculations
Daniel Beadle Tech I. 1 Seismic Load 1

Legation U. Udders: - Part . P. 4
Site Sol Classification:
Site Class C - Very Dense Soillsoft Rook
Occupancy Category: III

$$
\begin{aligned}
& S_{S}=0.147 \quad F_{i g} .22-1 \\
& S_{1}=0.049 \quad F_{i g} .22 .2 \\
& S_{D_{S}}=\frac{2}{3} F_{q} S_{S}=\frac{2}{3}(1.2)(0.147)=0.1176 \\
& S_{D_{1}}=\frac{2}{3} F_{V} S_{1}=\frac{2}{3}(1.7)(0.349)=0.056
\end{aligned}
$$

Seismic Design Category: A (treading to tables $11 ., 6-1811,6-2$)

Structural Engineer responded saying that the IBC allows a Cs value of . 01 for buildings with SDC: A

See flow chart in section 6.5 of IBC
of IBC
doe not mater designer Cs value of $0,01$. cant find mistake \therefore proceeding with $C_{s}=0,01$ for designer.

$$
\begin{aligned}
& T_{L}=\text { beset } \quad T<T_{L} \\
& \left.C_{S}=\frac{5 D_{1}}{(8 / L)}=\frac{10.05 \mathrm{~L}}{(312.25)}=.049\right) \\
& V=(0.01)(8,351,893 \mathrm{Bb})=83.5 \mathrm{~K}
\end{aligned}
$$

$h_{n}=73^{\prime}$
$\left.\begin{array}{l}x=0.75 \\ C_{t}=0.02\end{array}\right\}$ table $12.8-2$

Tech 3 Report

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

Lvl 2	Area	DL	Weight	
Slab	16600	46	763600	
superimposed	16600	5	83000	
Steel	16600	5	83000	
Façade	8663	45	389812.5	
CMU	8663	83	719029	
Int Brick	2590	40	103600	
Stone Floor	1700	20	34000	

Total

Lvl 3	Area
Slab	16600
superimposed	16600
Steel	16600
Façade	8820
CMU	8820
Int Brick	1400
Stone Floor	1700

路

Lvl 4	Area	DL	Weight	
Slab	16600	46	763600	
superimposed	16600	5	83000	
Steel	16600	5	83000	
Façade	9293	45	418162.5	
CMU	9293	83	771319	
Int Brick	1500	40	60000	
Stone Floor	1700	20	34000	

$2,213,082$

Tech 3 Report

Daniel Bodde

Advisor: Heather Sustersic

PH	Area	DL	Weight	
Slab	6000	46	276000	
Roof Deck	4700	3.3	15510	
superimposed	10700	5	53500	
Steel	10700	5	53500	
Façade	9000	45	405000	
CMU	9000	83	747000	
Green Roof	4700	25	117500	
				$1,668,010$
Roof	Area	DL		Weight
Slate	7310		10	73100
steel	7310	5	36550	
superimposed	7310		5	36550
			146,200	
				$8,351,893$

Tech 3 Report

Daniel Bodde
Advisor: Heather Sustersic

Appendix D: Center of Rigidity and Center of Mass Spot Checks

$$
=124^{\prime}
$$

2nd floor $C R$

$$
\begin{aligned}
& \begin{aligned}
\bar{y} c m=\frac{\Sigma \bar{y} A}{\sum A} & =\frac{(11.5)(4128.5)+(37,75)(6267.73)+(59.77)(2921.75)+(78.5)(2441)}{15780} \\
& =41^{1}
\end{aligned} \\
& \bar{x}_{C M}=\frac{\Sigma \bar{x} A}{S A}=\frac{(122-)(4128.5)+(127.5)(12.8 .)+(133)(2921.75)+(105,25)(2441)}{15780}
\end{aligned}
$$

Tech 3 Report
Daniel Mode
Advisor: Heather Sustersic

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\text { Daniel doable } \\
\text { Revive St.fforssec } \\
\text { Reach }
\end{array}\right. \\
& K_{1}=0.2117 \\
& k_{z}=0.211 \% \\
& K_{5}=0.6965 \\
& k_{3}=0.6309 \\
& k_{6}=0.7404 \\
& k_{e}=6.6574 \\
& k>=0.7902 \\
& k_{z}=1.0 \\
& \bar{x}=\frac{\sum k_{i y} x_{i}}{\sum k_{i y}}=\frac{(0.6309)(21)+(016576)(45)+(0.6945)(75)+(0.7404)(166)+(5.7902)(53)+(60)(234)}{0.6309+0.6576+0.6965+0.7404+0.7902+1.0} \\
& =14^{\prime} \\
& \bar{y}=\frac{\sum k_{i x} y_{i}}{\sum k_{i x}}=\frac{(0,2117)(23)+(0.2116,(47)}{0,2117+0,2116}=45^{\prime}
\end{aligned}
$$

Values differ slightly frow ETABS model. This can be attributed to the assumption that frames have zero sfifferess about the weak axis in the had calculations.

Tech 3 Report
Daniel Bodde
Advisor: Heather Sustersic

Appendix E: Member Strength Spot Checks

Column Check (C1)
Loads

$$
P_{a}=310^{K}
$$

$M_{r o x}=3445$ k-ft Values from ETABS

$$
M_{n y}=0.81 \mathrm{k} \cdot f t
$$

Axial only:

$$
\begin{aligned}
& W 12 \times 106 \\
& K L=-7 \times 14^{\prime}: 9.8^{\prime} \approx 10^{\prime}
\end{aligned} \quad \phi P u=1260 k>166 \mathrm{~K}
$$

Combined loading
from ruble $l-1$

$$
\begin{aligned}
& p=.794 \times 10^{-3} \\
& b_{y}=1.45 \times 10^{-3} \\
& b_{y}=3.16 \times 10^{-3} \\
& p P_{u}+b \times M r x+b . M_{1} \geq 1.0 \\
& \left(0.794 \times 10^{-3}\right)(310)+\left(1.45 \times 10^{-3}\right)(3445)+\left(3.14 \times 10^{-3}\right)(0.41 \times 1 .) \\
& =0.30 \leq 1.0 \quad O K
\end{aligned}
$$

Tech 3 Report
Daniel Mode
Advisor: Heather Sustersic

